
Intergral Information Solutions GmbH
Schickardstr 32 • D-71034 • Böblingen • Germany

FusionReactor JDBC Driver Wrapper: User Guide

Doc. Rev. 288, 15 January 2008

FusionReactor JDB Driver Wrapper User Guide

Trademarks and Warranties
FusionReactor, the FusionReactor logotype, and the Integral logotype are trademarks of Intergral
Information Solutions GmbH and may not be used without permission. Other trademarks are the property
of their respective owners.

The FusionReactor software product, including the FusionReactor JDBC Driver Wrapper is commercial
software and may not be redistributed except with the express written agreement of Intergral Information
Solutions GmbH. The software may only be used in accordance with the appropriate FusionReactor
license agreement.

To the fullest extent applicable by law, Intergral Information Solutions hereby disclaims all warranties,
including but not limited to the warranty of merchantability and the warranty of fitness for a particular
purpose.

Feedback
We welcome feedback on all our products and publications. Please e-mail them to support@fusion-
reactor.com and we will address them as quickly as possible.

Published in Germany

Copyright © 2005-2008 Intergral Information Solutions GmbH

All Rights Reserved

FR IO / 3.0

 2

mailto:support@fusion-reactor.com
mailto:support@fusion-reactor.com

User Guide FusionReactor JDBC Driver Wrapper

Table of Contents

Introduction..5

Introducing the FusionReactor JDBC Driver
Wrapper..5

Intended Audience..5

Limitations...5

Installation in ColdFusion..................................7

Delivery...7

Wrapping or Adding a New Datasource?..........7

Wrapping an Existing Datasource.....................7

Creating a New Wrapped Datasource in
ColdFusion..9

Using Macromedia's (DataDirect) ColdFusion
Built-in Drivers..9

Constructing JDBC URLs for other DataDirect
Drivers (CFMX/7/8)...10

Oracle ...10

MS Access..10

PostgesQL..10

MySQL..10

IBM DB2..10

MS SQL Server...10

Using a User-Specified Driver (“other”) Driver 11

Installing Third-Party JDBC JAR Files.........11

Standalone Installation (Servlets etc.).............11

Using the FusionReactor JDBC Driver
Wrapper...13

Configuration Options.....................................13

driver...13

rowLimit...13

notifyAfter..13

remindAfter..13

inhibitReformat..14

logToFusionReactor....................................14

interpretObjects...14

name...14

How To Specify These Options......................14

Sample JDBC URLs.......................................16

Oracle..16

MySQL..16

Microsoft SQL Server..................................16

Interpreting Log Data.......................................17

Log Fields...17

Calendar Date...17

Time..17

Epoch time..17

Fusion Request ID.......................................17

Thread...17

Client IP...17

HTTP Method..17

URL...18

Log Message Type......................................18

Execution Start Time...................................18

Execution End Time....................................18

Result Set Close Time.................................18

Execution Elapsed Time..............................18

Result Set Elapsed Time.............................18

Rows Read..18

Is Prepared Statement................................19

Is Row Limited...19

Datasource Name.......................................19

Statement ...19

Stack Elements...19

URL Parameters..19

Message..20

Prepared Statement: Positional Bind
Parameters Replacement Strings...................21

A Note On SQL Server Select Methods..........23

When You Can Use This Option.....................23

Direct and Cursor Selection Modes................23

Pros and Cons..24

Caveats for non-ColdFusion JDBC
Environments..25

Exception Catalog..27

3

FusionReactor JDB Driver Wrapper User Guide

 4

User Guide FusionReactor JDBC Driver Wrapper

Introduction

Introducing the FusionReactor JDBC Driver Wrapper
The FusionReactor JDBC Driver Wrapper allows developers and administrators to control the
interaction between Java and a database. The driver wrapper allows fine-grained metrics and
reporting of database activity:

• Logging of statements which ran against a database
This feature is useful to help detect deadlocks, see exactly what Statements look like
without resorting to manual log output, and to see exactly how your
PreparedStatements were bound before being run against the database.

• Row Limiting
The integrated row limiter can automatically halt database read activity after a user-
specifiable number of rows is reached. This can stop run-away queries before they
become a memory and resource problem.

• Notification and Reminders
The driver can optionally notify you when a certain number of rows has been read, and
periodically thereafter. Using this feature, you are able to keep a clear overview about
the volume of data being processed by Java.

The driver wraps any existing JDBC driver and is able to communicate metric data to
FusionReactor for easy perusal in the FusionReactor Administrator. If the driver does not detect
FusionReactor running (for instance when running in a standalone Java application), it reports
metrics to the standard output stream.

Intended Audience
This technical document is targeted at developers and administrators of standalone and
J2EE/ColdFusion applications. It presents the procedure for installing and configuring the
FusionReactor JDBC Driver Wrapper to run as a ColdFusion Data Source or as a standalone
JDBC data source.

The administrator is expected to have experience with ColdFusion Data Sources, and with how
JDBC URLs are constructed.

Limitations
The FusionReactor JDBC Driver Wrapper is intended to help you debug and manage J2EE JDBC
queries. It integrates tightly with FusionReactor to provide you with metrics and detailed
information about your pages' database activities. Our JDBC Driver Wrapper can't optimize your
queries and pages before they're run - but it can help you see where the time is being spent, or to
locate a 'stuck' query. The FusionReactor JDBC Driver Wrapper also can't totally insulate you
from performance or stability issues with underlying drivers.

Some of our customers have experienced stability issues with the standard Macromedia drivers
shipped with ColdFusion, for example, and while FusionReactor helped to pinpoint the problem, it
was ultimately resolved by trying an alternative driver. For example, many database vendors ship
their own JDBC drivers, and they are often very satisfactory for production use.

5

FusionReactor JDB Driver Wrapper User Guide

 6

User Guide FusionReactor JDBC Driver Wrapper

Installation in ColdFusion

Delivery
The FusionReactor JDBC Driver Wrapper is delivered as an integral part of the FusionReactor
product, and is located within the fusionreactor.jar file, which is installed during the FusionReactor
setup process. In order to use the driver with ColdFusion applications, you need only to alter the
Data Source definition within the ColdFusion administrator.

Wrapping or Adding a New Datasource?
If you are wrapping an existing datasource, you should continue to follow the instructions in this
section. If you are starting from scratch, skip ahead to “Creating a New Wrapped Datasource in
ColdFusion” on page 9.

Wrapping an Existing Datasource
Underlying all ColdFusion (and indeed all Java) database interaction is a configuration string
called a JDBC URL. This string tells ColdFusion almost everything it needs to connect to the
database: which driver to use, which machine to connect to, which port, and sometimes also the
database login and password too.

When using a standard ColdFusion driver, the ColdFusion Administrator application constructs
this URL 'behind the scenes', using the details you enter into the form about your server. The
FusionReactor JDBC Driver Wrapper requires this URL in order to function. Fortunately, finding it
is quite simple.

We recommend the following process, and we've provided a worked example to show you how it
works.

1. In the ColdFusion Administrator, select the Server Settings -> Settings Summary
page.

2. This is a long page, but contains the JDBC URL required for the wrapper. The database
datasources are outlined in Data and Services -> Database Data Sources. If you don't
feel like paging down to it, you can also search within that page for the name of your
datasource.

Our test datasource, imaginatively entitled 'testds', looks like this (it's very long and all on
one line):

jdbc:macromedia:sqlserver://int0006:1433;databaseName=frtest;send
StringParametersAsUnicode=false;MaxPooledStatements=1000

3. Note that down (or copy it to your clipboard). Now we're going to add a new wrapped
datasource based on this URL.

4. Access the ColdFusion Administrator's Data & Services -> Data Sources page. In the
Add New Data Source panel, enter the name of your wrapped data source. In the Driver
dropdown box, select Other. Click Add to go to the details page.

5. In the JDBC URL box, enter the first part of our wrapper syntax:

jdbc:fusionreactor:wrapper:{

.. then paste in the JDBC URL you copied from the Settings Summary page before.
Finally, add a final closing brace }.

Our wrapped datasource now looks like this (the wrapper syntax has been printed in
bold):

jdbc:fusionreactor:wrapper:
{jdbc:macromedia:sqlserver://int0006:1433;databaseName=frtest;sen
dStringParametersAsUnicode=false;MaxPooledStatements=1000}

6. If you name the datasource explicitly now, FusionReactor will display the name in the
“Data Source” column of the JDBC tab in the Request Details page. We'll do that now,

7

FusionReactor JDB Driver Wrapper User Guide

by adding a new parameter to our JDBC URL (in bold):

jdbc:fusionreactor:wrapper:
{jdbc:macromedia:sqlserver://int0006:1433;databaseName=frtest;sen
dStringParametersAsUnicode=false;MaxPooledStatements=1000};name=F
RTestDataSource

Don't forget the semicolon between the end of the wrapped URL and the name
parameter.

7. In the Driver Class box, enter the name of our wrapper:

com.intergral.fusionreactor.jdbc.Wrapper

8. In the Driver Name box, enter something sensible (really it can be anything -- this
parameter is never used).

9. In the User Name and Password boxes, enter your database username and password.

10. Submit this form and test the data source. If it works, rename the old one to something
else (“-old”, perhaps) and rename the new wrapped one to the old name.

11. Done!

 8

User Guide FusionReactor JDBC Driver Wrapper

Creating a New Wrapped Datasource in ColdFusion
This section shows you how to create a wrapped datasource from scratch. It explains how to
construct JDBC URLs for ColdFusion's builtin drivers (called the Macromedia drivers, since they
were introduced by Macromedia in ColdFusion MX), as well as for existing custom (non-
Macromedia) datasources.

Using Macromedia's (DataDirect) ColdFusion Built-in Drivers
If you are using the Macromedia-supplied drivers, you will need to convert your Data Source to an
'other'-type user-specified driver so it can be wrapped by FusionReactor.

1. Create a new Data Source within ColdFusion Administrator as an 'other'-type driver.

2. In the JDBC URL field, enter the original JDBC URL for your data source, wrapped by the
FusionReactor URL in curly braces {}. You can additionally name the datasource using
the name parameter (don't forget to separate the parameter from the wrapped URL with
a semicolon). If you name the data source in this way, FusionReactor will display this
name in the Data Source column of the JDBC tab in the Request Details page. This is
useful if you're using multiple data sources.

E.g. original data source was MS-SQL Server, database 'testdb', named 'MyDataSource'.

Original JDBC URL:
jdbc:macromedia:sqlserver://localhost:1433;databaseName=testdb

FusionReactor URL:
jdbc:fusionreactor:wrapper:
{jdbc:macromedia:sqlserver://localhost:
1433;databaseName=testdb};name=MyDataSource

3. In the JDBC Driver Class field, enter the name of the FusionReactor JDBC Driver
Wrapper class:

com.intergral.fusionreactor.jdbc.Wrapper

4. Enter 'FusionReactor' in the Driver Name field, and appropriate username and password
values in their respective fields.

5. Click 'Submit'. ColdFusion will immediately test the driver and provide feedback if
necessary. When the FusionReactor driver is loaded, it will report “FusionReactor JDBC:
Driver loaded.” to the standard output stream (usually logged to coldfusion-out.log
or default-out.log within cfmx\runtime\logs)

9

FusionReactor JDB Driver Wrapper User Guide

Constructing JDBC URLs for other DataDirect Drivers
(CFMX/7/8)
While it is not within the scope of this manual to provide exhaustive information on how
ColdFusion internally constructs JDBC URLs for its built-in drivers, the following template
information (taken from the neo-query.xml file within the cfmx\lib folder) may help you.

Oracle
Class macromedia.jdbc.MacromediaDriver
jdbc:macromedia:oracle://[host]:
[port];SID=[sid];sendStringParametersAsUnicode=[sendStringParamet
ersAsUnicode]

MS Access
Class macromedia.jdbc.MacromediaDriver
jdbc:sequelink:msaccess://[host]:
[port];serverDatasource=[datasource]

PostgesQL
Class org.postgresql.Driver
jdbc:postgresql://[host]:[port]/[database]?[args]

MySQL
Class org.gjt.mm.mysql.Driver
jdbc:mysql://[host]:[port]/[database]?[args]

IBM DB2
Class macromedia.jdbc.MacromediaDriver
jdbc:macromedia:db2://[host]:
[port];DatabaseName=[database];sendStringParametersAsUnicode=[sen
dStringParametersAsUnicode];[args]

MS SQL Server
Class macromedia.jdbc.MacromediaDriver
jdbc:macromedia:sqlserver://[host]:
[port];databaseName=[database];SelectMethod=[selectmethod];sendSt
ringParametersAsUnicode=[sendStringParametersAsUnicode]

 10

User Guide FusionReactor JDBC Driver Wrapper

Using a User-Specified Driver (“other”) Driver
If you are already using a custom (non DataDirect/Macromedia) driver, simply enclose the
existing JDBC URL within the FusionReactor syntax as noted in step 2 above, and change the
Driver Class to that of the FusionReactor driver, as specified in step 3.

You will also need to supply the FusionReactor 'driver' parameter in order to allow the
FusionReactor JDBC Driver Wrapper to locate the appropriate wrapped driver.

E.g. using the Microsoft JDBC Driver for SQL Server 2005:

Original JDBC URL:
jdbc:sqlserver://127.0.0.1:1433;DatabaseName=testdb

Original Driver Class:
com.microsoft.sqlserver.jdbc.SQLServerDriver

New wrapped JDBC URL:
jdbc:fusionreactor:wrapper:
{jdbc:sqlserver://127.0.0.1:1433;DatabaseName=testdb};driver=com.micros
oft.sqlserver.jdbc.SQLServerDriver

New Driver Class:
com.intergral.fusionreactor.jdbc.Wrapper

After submitting this form, ColdFusion will immediately test the connection and provide any
necessary feedback in the ColdFusion Administrator. If the FusionReactor JDBC Driver Wrapper
detects any problems with the underlying wrapped driver or with its own options, it will also
provide feedback in the same way.

Any exceptions generated by the FusionReactor JDBC Driver Wrapper are prefixed with an
exception ID number, which may be used to look up more information later in this document.

When running as part of J2EE/ColdFusion, and if the FusionReactor JDBC Driver Wrapper
detects a running FusionReactor application, any queries run during the course of the request will
be reported to FusionReactor for inclusion in the user interface, where appropriate.

Installing Third-Party JDBC JAR Files
In order for the Driver Wrapper to locate the underlying driver, the third-party JDBC JAR driver file
(usually delivered as one or more JAR files) must be installed in a location visible to the Driver
Wrapper classloader. We recommend either of the following locations beneath your ColdFusion
installation folder:

● CFusionMX7\runtime\servers\coldfusion\SERVER-INF\lib

● CFusionMX7\runtime\lib

Standalone Installation (Servlets etc.)
The driver is packaged within the fusionreactor.jar file and you must arrange for this file to
be in the JVM classpath when the application runs. The URL syntax is as above. In this
configuration, you must provide the 'driver' parameter, in order that the FusionReactor JDBC
Driver Wrapper can load the appropriate underlying wrapped driver.

11

FusionReactor JDB Driver Wrapper User Guide

 12

User Guide FusionReactor JDBC Driver Wrapper

Using the FusionReactor JDBC Driver Wrapper

Configuration Options
The FusionReactor JDBC Driver Wrapper is configured exclusively using JDBC URL driver
parameters. The following parameters may be specified as name=value pairs, separated by
semicolons. No parameters are mandatory. Parameter names are case-insensitive.

driver
Value: Fully-qualified Java class name
Default: no underlying driver will be loaded.
This option instructs FusionReactor JDBC Driver Wrapper to load an underlying wrapped
driver.

This is not necessary only if the JVM is already aware of the target driver (i.e. it has
already been loaded with Class.forName(“...”)). Macromedia's own DataDirect
drivers are loaded automatically by ColdFusion, so this option may not be necessary if
you are using these drivers. However, if you are using a user-specified driver (having a
JDBC URL which does not start with jdbc:macromedia), you must supply this
parameter.

Since the registration of the driver is only ever performed once, regardless of how many
connections the driver processes, this parameter can (and should) be specified on all
FusionReactor wrapped Data Sources.

If you do not specify this option, and the JVM is not aware of the underlying driver,
FusionReactor will raise an exception and ColdFusion will not verify the driver.

rowLimit
Value: integer
Default: 0 (disabled).
This option instructs the FusionReactor JDBC Driver Wrapper to limit returned rows to
the given value.

After the application has retrieved this number of rows from the result set, FusionReactor
will discard any remaining rows.

notifyAfter
Value: integer
Default: 0 (disabled).
This option instructs the FusionReactor JDBC Driver Wrapper to output a notification
after 'n' rows have been retrieved for the query.

remindAfter
Value: integer
Default: 0 (disabled).
This option instructs the FusionReactor JDBC Driver Wrapper to periodically output a
query reminder every 'n' rows. If notifyAfter is specified, FusionReactor JDBC Driver
Wrapper will only begin reminding after the notification threshold has been reached.

E.g. notifyAfter=1000, remindAfter=100, actual rowcount 1350.
Notification occurs at row 1000, reminders at 1100, 1200 and 1300.

13

FusionReactor JDB Driver Wrapper User Guide

inhibitReformat
Value: Boolean
Default: false.
When tracking queries, the FusionReactor JDBC Driver Wrapper will reformat them for
logging and presentation by attempting to make them fit on a single line.

This allows logs to be viewed more easily, but may hinder developers who are used to
seeing queries formatted a certain way (as they are written in a ColdFusion page, for
example). Setting this option to 'true' stops FusionReactor JDBC Driver Wrapper
reformatting statement text, and allows multi-line presentation in the FusionReactor
interface and log.

logToFusionReactor
Value: Boolean
Default: true.
If set to true (the default) and the FusionReactor JDBC Driver Wrapper detects a running
FusionReactor instance, it will log the execution of a query to FusionReactors 'jdbc-
X.log' (where 'X' is the current rolling log number).

If this option is enabled and FusionReactor was not detected, it has no effect.

interpretObjects
Value: Boolean
Default: true.
If set to true (the default), when a PreparedStatement attempts to bind an Object type to
a positional parameter using one of the setObject(...) methods, the wrapper will attempt
to interpret the data (for logging and reporting purposes only) by calling the toString()
method on the object. This value will then be used in the log and FusionReactor
administrator, as if the application had called a setString(...) method. If the object does
not override the default toString() method, the default behavior is to return the hash code
of the object.

If this parameter is false, the wrapper will use the format “{OBJECT java.class.name
xyz}” where xyz is the .toString() representation. This makes it clear that the parameter
is of type Object, but is perhaps less easy to read in the log and the Administrator.

name
Value: string
Default: empty
If specified, the driver wrapper will report metrics to FusionReactor with the given name.
These names will be reported in the JDBC logfile (or as an empty value if not set). The
name will also be reflected in the JDBC tab of the Request Details page, allowing the
user to differentiate queries which ran against more than one datasource. This is useful
when multiple databases are being used to aggregate results, or when different drivers
are being tested.

How To Specify These Options
These options pertain to the FusionReactor JDBC Driver Wrapper, and should therefore be
specified outside of the curly braces used to wrap the original JDBC URL. Any options which
are required by the original JDBC URL should remain within the braced section.

Here's an example of a wrapped SQL Server JDBC URL, using the Macromedia driver, to which
a couple of FusionReactor JDBC Driver Wrapper options have been added. The material in bold
illustrates the additional wrapper syntax:

jdbc:fusionreactor:wrapper:
{jdbc:macromedia:sqlserver://int0007:1433;databaseName=frtest};notifyAf
ter=1000;remindAfter=200;inhibitReformat=true;name=DataWarehouse

You can see that in this example, the notifyAfter, remindAfter, inhibitReform and name
options have all been specified. The databaseName option pertains to the Macromedia driver,
and are therefore within the braced section.

 14

User Guide FusionReactor JDBC Driver Wrapper

15

FusionReactor JDB Driver Wrapper User Guide

Sample JDBC URLs
Here are a few examples of URLs, wrapped with the FusionReactor Driver Wrapper. As above,
the additional material has been printed in bold to make it easy to see.

Oracle
Using the Macromedia driver, with the notifyAfter FusionReactor Driver Wrapper option:

jdbc:fusionreactor:wrapper:
{jdbc:macromedia:oracle://int0234:1521;SID=testdb};notifyAfter=10
000

MySQL
Using the MySQL GJT driver, with the inhibitReformat FusionReactor Driver Wrapper
option:

jdbc:fusionreactor:wrapper:{jdbc:mysql://int0003:3306/webshopdb?
defaultFetchSize=400};inhibitReformat=true;driver=org.gjt.mm.mysq
l.Driver

Microsoft SQL Server
Using the Macromedia driver, with the remindAfter FusionReactor Driver Wrapper option
(we've named this data source too):

jdbc:fusionreactor:wrapper:
{jdbc:macromedia:sqlserver://int0007:1433;DatabaseName=frtest};re
mindAfter=500;name=SQLServerDataSource

.. and again using the Microsoft SQL Server 2005 – which is not supplied by
Macromedia, and so must therefore be explicitly specified as the driver:

jdbc:fusionreactor:wrapper:
{jdbc:sqlserver://int0007:1433;DatabaseName=frtest};driver=com.mi
crosoft.jdbc.sqlserver.SQLServerDriver

... and as a quick reminder, the FusionReactor Driver Wrapper driver class is:

com.intergral.fusionreactor.jdbc.Wrapper

 16

User Guide FusionReactor JDBC Driver Wrapper

Interpreting Log Data
When outputting data to the JDBC log file (which can be found in FusionReactor's instance log
directory), the FusionReactor JDBC Driver Wrapper outputs a number of fields which can be used
to debug JDBC transactions and derive statistics about how the system is using database
resources.

The JDBC log file is space-delimited, with text fields (which may contain spaces) enclosed with
double-quotes. We have had no trouble importing this data into Microsoft Excel and OpenOffice
Calc, as well as Microsoft SQL Server using Data Transformation Packages.

Log Fields
The following list describes the meaning of each field. The list describes the fields in left-to-right
order. For field sources listed as 'FusionReactor', this field may be empty if the request in which
the query ran has no associated FusionReactor tracked request.

Calendar Date
Value: YYYY-MM-DD
Source: Wrapper

Specifies the calendar date on which the log message was raised.

Time
Value: HH:MM:SS
Source: Wrapper

Specifies the 24-hour time at which the log message was raised.

Epoch time
Value: long millisecond
Source: Wrapper

Specifies the exact epoch time (millisecond offset from midnight on January 1st 1970
UTC) at which the log message was raised.

Fusion Request ID
Value: long integer
Source: FusionReactor

Specifies the FusionReactor request ID within whose execution this JDBC interaction
occurred.

Thread
Value: String
Source: Wrapper

Specifies the name of the thread in which this JDBC interaction occurred.

Client IP
Value: dotted quad IP address
Source: FusionReactor

Specifies the IP of the client for whom this request is running.

HTTP Method
Value: HTTP 1.X Method (GET / POST / HEAD etc.)
Source: FusionReactor

Specifies the HTTP method of the request which caused this JDBC interaction

17

FusionReactor JDB Driver Wrapper User Guide

URL
Value: Full or Partial URL
Source: FusionReactor

Specifies the URL which caused this request to run. If FusionReactor is tracking
complete URLs (which machine name) this will be a full URL. If not, this will be the path
element.

Log Message Type
Value: One of METRIC, NOTIFICATION or REMINDER
Source: Wrapper

Specifies the type of this message. METRIC reports the completion of a JDBC
interaction, NOTIFICATION specifies that a Notification threshold has been reached on
the size of the result set, and REMINDER specifies that a result set size reminder interval
has been reached.

Execution Start Time
Value: long millisecond
Source: Wrapper

The start time in milliseconds from the epoch datum (see Epoch Time above) at which
the JDBC interaction began (i.e. the time at which the statement was transferred to the
database driver for execution)

Execution End Time
Value: long millisecond
Source: Wrapper

The time at which the underlying database driver finished executing the statement.

Result Set Close Time
Value: long millisecond
Source: Wrapper

The time at which the result set was closed by the J2EE application (e.g. ColdFusion
etc.). This interval between this time and the Execution Start Time is useful as the total
processing time for the query, including database execution time and the time taken for
the J2EE application to fully read and process the result set.

Execution Elapsed Time
Value: long millisecond
Source: Wrapper

The time taken to execute the statement on the database (computed from Execution
Start and End times)

Result Set Elapsed Time
Value: long millisecond
Source: Wrapper

The time taken between sending the statement to the underlying driver for execution, and
the J2EE application actually closing the result set (computed from the Execution Start
time and the Result Set Close Time)

Rows Read
Value: long
Source: Wrapper

Specifies the maximum number of rows read by the J2EE application. If the statement is
not a DQL command (select etc.), but rather is DML/DDL/RIGHTS (insert/update,
drop/alter/create, revoke/grant etc.) this value will be 0.

 18

User Guide FusionReactor JDBC Driver Wrapper

Is Prepared Statement
Value: boolean
Source: Wrapper

Specifies whether this statement was prepared in advance of its execution.

Is Row Limited
Value: boolean
Source: Wrapper

Specifies whether the Row Limiter activated to stop the query.

Datasource Name
Value: String
Source: Wrapper

Specifies the name of the datasource (specified by the JDBC 'name' parameter). Blank if
the name was not specified.

Statement
Value: SQL String
Source: Wrapper

Specifies the statement which was run during this interaction. Any whitespace formatting
in the original statement is flattened to allow the statement to appear on one line. If the
interaction was a batch execution, individual statements are delimited by [[and]] strings.

Stack Elements
Value: Comma-separated list of Strings
Source: Wrapper

If FusionReactor is configured to record stack traces, this field contains a comma-
separated list of stack frames, recorded when the query completed. If the debug
information is available, this field can be used to locate the exact line in a script or Java
program which caused the interaction.

URL Parameters
Value: String
Source: FusionReactor

Contains the parameters which were present on the URL associated with the request in
which this statement is running.

19

FusionReactor JDB Driver Wrapper User Guide

Message
Value: String
Source: Wrapper

For NOTIFICATION or REMINDER log messages, this field contains the text of the
notification or reminder.

 20

User Guide FusionReactor JDBC Driver Wrapper

Prepared Statement: Positional Bind Parameters
Replacement Strings

During presentation of the statement text for Prepared Statements, the FusionReactor JDBC
Driver Wrapper attempts to replace the bind parameter placeholder (“?”) with an appropriate
representation of the bound value for that parameter. This is not always possible, for example
with binary streams. The following table details the replacement.

Textual replacements in italics have no feasible representation and are inserted as literals. All
other types are converted to their string representation for output.

Parameter Type PreparedStatement Method Text Representation

SQL Array setArray(...) {SQL ARRAY}

ASCII Stream setAsciiStream(...) {ASCII STREAM}

Binary Stream setBinaryStream(...) {BINARY STREAM}

Big Decimal setBigDecimal(...) String representation

Blob setBlob(...) {BLOB}

Boolean setBoolean(...) String representation

Byte setByte(...) String representation

Bytes setBytes(...) String representation: comma-
separated list of up to 256 bytes

CharacterStream setCharacterStream(...) {CHARACTER STREAM}

Clob setClob(...) {CLOB}

Date setDate(...) String represenation using
Date.toString() to format

Double setDouble(...) String representation

Floating Point Number setFloat(...) String representation

Integral Number setInt(...) String representation

Long Integral Number setLong(...) String representation

Null setNull(...) {NULL}

Object setObject(...) String representation if option
interpretObjects is true (or not
specified)

otherwise:

“{OBJECT java.class.name xyz}”

where xyz is the .toString()
representation

Reference setRef(...) {REF}

Short Integral Number setShort(...) String representation

String setString(...) String representation

Time setTime(...) String representation

Timestamp setTimestamp(...) String representation

21

FusionReactor JDB Driver Wrapper User Guide

Parameter Type PreparedStatement Method Text Representation

Unicode Stream setUnicodeStream(...) {UNICODE STREAM}

Uniform Resource Locator setURL(...) String representation

 22

User Guide FusionReactor JDBC Driver Wrapper

A Note On SQL Server Select Methods
In this edition of the JDBC Driver Wrapper manual, we have removed references to the
Macromedia/Microsoft SQL Server driver option selectMethod. This option controls how the
driver and the database supply rows to your application, and can have an impact on memory
usage and JDBC processing speed. We want you to make an informed decision about whether
to apply this option, and this section will provide an explanation about how this option works.

When You Can Use This Option
This option is applied as a driver parameter in the JDBC URL for Microsoft SQL Server
datasources. It can be used with the Microsoft JDBC Driver (2000 and 2005), and the built-in
Macromedia driver. Since it is a parameter to the underlying JDBC driver, it must be supplied
within the wrapped part of the URL:

Using the Macromedia Driver:

jdbc:fusionreactor:wrapper:
{jdbc:macromedia:sqlserver://int0007:1433;DatabaseName=frtest;Sel
ectMethod=cursor};remindAfter=500;name=SQLServerDataSource

Using the Microsoft SQL Server 2005 JDBC Driver:

jdbc:fusionreactor:wrapper:
{jdbc:sqlserver://int0007:1433;DatabaseName=frtest;SelectMethod=c
ursor};driver=com.microsoft.jdbc.sqlserver.SQLServerDriver

Direct and Cursor Selection Modes
If this option is not specified in the JDBC URL, it defaults to direct.

Direct Selection Method

When the driver is operating in direct mode, select statements are processed like this:

• Application performs an SQL select.

• JDBC driver transfers the request to the database.

• Database performs the select.

• Database transfers the complete result set back to the driver.

• Driver makes each row available to the application.

Cursor Selection Method

Here is the same process when the driver operates in cursor selection mode:

• Application performs an SQL select.

• JDBC driver transfers the request to the database.

• Database performs the select.

• Database opens a cursor, and sends the first batch of rows back.

• Driver makes the first batch of rows available.

• Application eventually requests a row which wasn't in the first batch.

• Driver asks the database for more rows.

• Database uses the cursor to see where it was in the results, and transfers
the next batch.

• .. etc., until the application closes the query or the database exhausts the cursor.

23

FusionReactor JDB Driver Wrapper User Guide

Pros and Cons
Direct mode transfers all the data at once. The data is then stored in the driver's memory space.

Pros

• Very fast for the application to iterate through rows because all data is
immediately available.

• Useful for fast batch work where speed is preferable over low memory usage.

Cons

• Large result sets will consume a lot of memory. You must account for this
memory when configuring your J2EE (ColdFusion) application server. You must
provide enough margin for the size of the largest result set to be requested.

○ Repeatedly opening large result sets may cause Java to perform major
garbage collections often, causing the application to become less
responsive.

○ Concurrently opening large result sets may cause memory to be exhausted,
leading to continuous garbage collection as Java attempts to reclaim
memory, and possible crashes.

○ Be aware that the total memory requirement for a given result set is twice
the size of the result set. When the database runs the query, it must first
buffer the results in its own memory space, before transferring all the data to
the client.

• Long network delay when query is run while all data is transferred. For
databases running on the same server, this delay is shorter but not insignificant,
since the TCP/IP transport is still used.

• Large time and memory overhead if not all rows are processed by the
application.

○ If the application only processes the first few rows, the transfer and storage
of the entire result set is very inefficient.

• Concurrent requests for result sets from the database will cause separate
connections to be opened to the database.

Cursor mode transfers data in batches transparently to the application. The complete resulting
row set for each query is stored in the database. The J2EE (ColdFusion) application which uses
the JDBC driver only stores one batch (typically a small fraction) of rows. The driver takes care of
requesting new batches from the database as they are needed.

Pros

• Small memory requirement in the client application, since only one batch of rows
is stored.

○ Memory demand burden is placed on the database, which can typically
manage it more efficiently than J2EE applications. If the database is running
on a dedicated machine, the memory requirement is then transferred to that
machine, leaving the J2EE (ColdFusion) sever with more memory to allocate
to the application.

• Result set processing can begin much more quickly since there is a much
smaller initial delay before the driver makes rows available.

• Repeatedly opening large queries, running large concurrent queries, or only
processing the first few rows of a large result set is comparatively cheap, since
only the first batch will be transferred and stored in the client.

Concurrently-running queries may be interleaved over the same connection.

Cons

• Total time taken to retrieve an entire result set is slightly higher than in direct
mode, since the driver must retrieve several batches of rows.

 24

User Guide FusionReactor JDBC Driver Wrapper

Caveats for non-ColdFusion JDBC Environments
This section is for engineers using SQL Server JDBC drivers in a J2SE/J2EE environment which
is not ColdFusion; e.g. where the driver, connection etc. is obtained manually using Java code.

This caveat applies only to MS SQL Server 2000 JDBC Driver and DataDirect/Macromedia
SQL Server Drivers.

This problem does not occur with the MS SQL Server 2005 JDBC Driver.

Connection Commit Status Restrictions in Direct Mode

You may see the following JDBC exception:

“Can't start a cloned cloned connection while in manual transaction mode”.

When operating in direct mode, only one active SQL statement (including 'select' statements) can
be open over a java.sql.Connection.

If a second or subsequent statement is opened while any result sets or statements are still active
on the first connection, the connection is transparently cloned by the driver, and the statement is
run over the new connection.

If the auto-commit status of the connection has been changed from the default auto-
commit=true to auto-commit=false (that is, all transactions will be explicitly committed or
rolled back), the cloned connection may have uncommitted (dirty) data present. In this case it is
not safe to start a new statement, and the driver issues the exception above.

To alleviate this situation, one or more the following measures may be taken:

1. Switch to cursor mode by appending selectMethod=cursor to your JDBC URL.

2. Switch to auto-commit mode.

3. Ensure that only one statement is active on a connection by closing all statements and
result sets prior to opening new ones.

4. Ensure that all connection operations are synchronized against multiple access in a multi-
threaded environment.

Furthermore, several operations may cause the driver to internally create a second statement and
attempt to run it on the same connection (e.g. updating certain types of result set), producing the
same exception.

References

Microsoft KB article 313181 refers: http://support.microsoft.com/kb/313181

25

http://support.microsoft.com/kb/313181

FusionReactor JDB Driver Wrapper User Guide

 26

User Guide FusionReactor JDBC Driver Wrapper

Exception Catalog
In almost all cases, the FusionReactor JDBC Driver Wrapper will propagate all SQL Exceptions
upwards, allowing them to be transparently handled by an application. In certain cases,
FusionReactor JDBC Driver Wrapper can originate its own exceptions.

These exceptions have an ID number placed in square brackets within the message string. This
ID number can be used to locate more information in the following table.

ID Example Explanation

1 Driver options must be name=value pairs Indicates an error with the wrapper driver parameters.
Check all options have values.

2 value for driver option '(option)' was neither
'true' nor 'false' (value)

The valid values for this option are either 'true' or
'false'. The actual read value is provided in the
message. Check the option specified has a valid
value.

4 driver option '(option)' is unknown The supplied option was not known. The rogue option
is given in the message. Check the option for
typographical errors.

5 couldn't parse value for driver option
(option) (value) as a number.

The given driver option requires a number as its
value, and FusionReactor couldn't parse the given
value as a number. The option and the rogue value
are given in the message. Check the value to make
sure it can be parsed as a number and has no
alphabetic characters.

6 driver class (classname) could not be
found and loaded.

The Java class specified with the 'driver' option could
not be found. Check the class or jar is within the
application classpath, and the class name is fully
qualified (if required)

7 Could not find a wrapped JDBC URL
within the passed string. The wrapped
URL must be within braces {}.

The Driver Wrapper could not find a wrapped URL
within the JDBC URL. Check the syntax of the whole
URL and make sure the original URL is specified
within braces {...}.

8 Soft kill active for this thread This thread has been marked for Soft Kill by
FusionReactor. The Driver Wrapper will not proceed
with any further database activity.

9 URL supplied did not conform to JDBC
URL specification. Please check the
syntax.

The Driver Wrapper could not reliably decipher the
supplied JDBC URL, because it probably contained a
syntax or typographical error. Please check it
carefully by hand.

27

	Introduction
	Introducing the FusionReactor JDBC Driver Wrapper
	Intended Audience
	Limitations

	Installation in ColdFusion
	Delivery
	Wrapping or Adding a New Datasource?
	Wrapping an Existing Datasource

	Creating a New Wrapped Datasource in ColdFusion
	Using Macromedia's (DataDirect) ColdFusion Built-in Drivers
	Constructing JDBC URLs for other DataDirect Drivers (CFMX/7/8)
	Oracle
	MS Access
	PostgesQL
	MySQL
	IBM DB2
	MS SQL Server

	Using a User-Specified Driver (“other”) Driver
	Installing Third-Party JDBC JAR Files

	Standalone Installation (Servlets etc.)

	Using the FusionReactor JDBC Driver Wrapper
	Configuration Options
	driver
	rowLimit
	notifyAfter
	remindAfter
	inhibitReformat
	logToFusionReactor
	interpretObjects
	name

	How To Specify These Options
	Sample JDBC URLs
	Oracle
	MySQL
	Microsoft SQL Server

	Interpreting Log Data
	Log Fields
	Calendar Date
	Time
	Epoch time
	Fusion Request ID
	Thread
	Client IP
	HTTP Method
	URL
	Log Message Type
	Execution Start Time
	Execution End Time
	Result Set Close Time
	Execution Elapsed Time
	Result Set Elapsed Time
	Rows Read
	Is Prepared Statement
	Is Row Limited
	Datasource Name
	Statement
	Stack Elements
	URL Parameters
	Message

	Prepared Statement: Positional Bind Parameters Replacement Strings
	A Note On SQL Server Select Methods
	When You Can Use This Option
	Direct and Cursor Selection Modes
	Pros and Cons
	Caveats for non-ColdFusion JDBC Environments

	Exception Catalog

